Dietary intake profile among Tunisians school children having iodine deficiency or excess

R. Doggui*1, M. El Ati-Hellal 2, P. Traissac 3, H. Ben Gharbia 4, J. El Ati 1

1 Institut National de Nutrition et de Technologie Alimentaire, SURVEN Laboratory, Tunis, Tunisia
2 Institut Préparatoire aux Etudes Scientifiques et Techniques, Laboratory Research of Toxicology Research and Environment, Tunisia
3 Institut de Recherche pour le Développement (IRD), NUTRIPASS Unit, IRD-UM-SupAgro, Montpellier, France.
* Speaker and corresponding author: doggui.radhouene@gmail.com
Introduction

Iodine is an essential trace element for thyroid hormones synthesis.

Iodine deficiency disorders (IDD) have been recognized as a public health problem in the world since the 1920s.

In Tunisia, the NW region has been recognized as an IDD area since the 70s.

1984: Mandatory legislation on salt iodization was launched in IDD area.

The National IDD programme was legislated in 1995 and implemented in 1996 as recommended by the WHO/UNICEF/ICCIDD in 1993.

The salt iodization for food use is obligatory and generalized with iodization range is 35-45 ppm of potassium iodate (KIO₃) at production stage.

A national survey conducted in 2012 among Tunisian school children (SAC) showed that 11.4% (n=150) had iodine deficiency and 4.2% (n=68) had iodine excess status.

Our objective was to assess the relation between dietary intake patterns and iodine status of SAC with deficiency or excess urinary iodine concentration.
Dietary intake profile among Tunisians school children having iodine deficiency or excess

2- Methods

- 24 hours dietary recall (three pass) for 150 ID children (urinary iodine concentration or UIC < 100 µg/l) and 68 having excess of iodine (UIC ≥ 500 µg/l).
- A specific Tunisian food composition database and the Food Processor software SQL statistics (mean ± s.e.; student test) by STATA 9.0 software;
- Dietary reference intakes for French population were used.

3- Results & Discussion

Macronutrients and energy

<table>
<thead>
<tr>
<th>Variables</th>
<th>Recommendations (g/d)</th>
<th>7 – 9 y</th>
<th>10 – 12 y</th>
<th>Percent of coverage</th>
<th>UIC < 100 µg/l</th>
<th>UIC ≥ 500 µg/l</th>
<th>P- value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Absolute intake</td>
<td>Absolute intake</td>
<td></td>
</tr>
<tr>
<td>Energy (kcal/d)</td>
<td>1912</td>
<td>2365/2080 (Boys/Girls)</td>
<td></td>
<td>84.2</td>
<td>1830 (31)</td>
<td>1940 (49)</td>
<td>0.130</td>
</tr>
<tr>
<td>Proteins (g/d)</td>
<td>62.5</td>
<td>76/67.5 (Boys/Girls)</td>
<td></td>
<td>85.8</td>
<td>60.5 (1.9)</td>
<td>62.3 (2.4)</td>
<td>0.296</td>
</tr>
<tr>
<td>Carbohydrates (g/d)</td>
<td>251</td>
<td>310/273 (Boys/Girls)</td>
<td></td>
<td>85.3</td>
<td>242.5 (5.0)</td>
<td>257.3 (8.1)</td>
<td>0.300</td>
</tr>
<tr>
<td>Total fats (g/d)</td>
<td>69</td>
<td>85.5/75 (Boys/Girls)</td>
<td></td>
<td>81.9</td>
<td>64.7 (3.1)</td>
<td>69.5 (2.5)</td>
<td>0.061</td>
</tr>
</tbody>
</table>
3- Results & Discussion

- **Micronutrients**

<table>
<thead>
<tr>
<th>Variables</th>
<th>Recommendations (g/d)</th>
<th>Percent of coverage</th>
<th>UIC < 100 µg/L</th>
<th>UIC ≥ 500 µg/L</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 – 9 y</td>
<td>10 – 12 y</td>
<td>Absolute intake</td>
<td>Absolute intake</td>
<td></td>
</tr>
<tr>
<td>Iodine (µg/d)</td>
<td>120</td>
<td>150</td>
<td>109.4</td>
<td>133.3 (4.7)</td>
<td>181.4 (8.2)</td>
</tr>
<tr>
<td>Iron (mg/d)</td>
<td>7</td>
<td>10</td>
<td>124.4</td>
<td>12.0 (0.2)</td>
<td>11.9 (0.5)</td>
</tr>
<tr>
<td>Selenium (µg/d)</td>
<td>30</td>
<td>40</td>
<td>43.7</td>
<td>14.7 (2.0)</td>
<td>17.2 (4.6)</td>
</tr>
<tr>
<td>Vitamin A (ER)</td>
<td>500</td>
<td>550</td>
<td>86.8</td>
<td>500.7 (51.3)</td>
<td>424.2 (34.5)</td>
</tr>
</tbody>
</table>

- Similar intakes for minerals and vitamins were found except for iodine;

- Prevalence of low iodine intake was 60.1% among ID group.

- low selenium intake was reported which may contribute to goiter formation;
Dietary intake profile among Tunisians school children having iodine deficiency or excess

4. Conclusion

- No differences were found for nutrients intake as regard to the iodine status;
- knowing that salt and bread were the decisive sources of iodine and also only 55.8% of Tunisian households consume adequately iodized salt, strengthening the monitoring system of salt iodization programme to ensure the sustainability of IDD elimination
- Supporting technically the private salt producers to ensure regular quality control of iodized salt.
Thank you

Any question ?