

18-19 July, 2016-Montpellier, France

A protocol for designing a database based on production activity concept: a case study using a bio-economic model

Meriam Hammouda^{*1}, Hatem Belhouchette¹, Roza Chenoune², Guillermo Flichman², Thierry Darbin³, Jacques Wery⁴

¹CIHEAM-IAMM/UMR System, ² CIHEAM-IAMM, ³ Invivo AGROSOLUTIONS, ⁴ INRA-UMR System

* hammouda.meriam@yahoo.fr

Context and objectives

development and implementation of farm bio-economic mathematical The programming models requires a good understanding of the concept of "agricultural activity" for ensuring a consistent integration between biophysical and technical production components (Flichman et al., 2011). With this concept, it becomes possible to i) produce engineering production

functions, hence comparing, from biophysical point of view, yield, resource use, and externalities of agricultural production systems (Belhouchette et al., 2011), and to ii) explore hypothesis of resource uses and allow defining adaptation strategies to

climate change and scenarios of resource availability, as well as defining thresholds of externalities to limit the environmental impact of production systems (Donatelli et Confalonieri, 2011).

The objective of this study is to describe and discuss steps to build "activity" components" (figure 1) and a database in order to assess a scenario targeting the reduction of N use in the Midi-Pyrenees region, France.

Methodology

1. Conceptual framework for « Activity » definition and performance evaluation

Definition of agricultural activities

2. Activities' input-output coefficients

2. Case study: farm type specification

Table 1. Farm type located in the Midi-Pyrenees region, France

	T. Definition of agricultural activities				Activity dimension				Input coefficients				Output coefficients	
ios VS stakeholders expectations	Specify the purpose of the study Limiting nitrogen pollution, strategic choices in changing economic and	Data collection VS data availability/data quality to quantify technicalcoefficients from:		List of ctivities	Crops		Soil Soil_usefu reserve (mm/m)	I Irrigation technique	Area I (ha)	rrigation dos (mm)	e Fertilizers (kg/ha)	Treatment frequency index (herbicides)	Yield (q/ha)	Crop prices (€/t)
	institutional conditions (PAC);	 Experiments; Statical data; 	A	ctivity 1	Sunflower	Winter barley	clay 162	dry	6.5	0	140	1.75	20	36
	Determine the activity « dimension »	 Bibliography; 	Str A	ctivity 2	Soya	Meadows	clay 162	irrigated	4	100	0	2.09	33	36
	Variables considered by taking into account the purpose of the study;	 Expert knowledge; 		ctivity 3	Soya	Soft wheat	clay 162	irrigated	24	100	0	2,09	33	36
	doodant the purpood of the olday,	Farm surveys;		ctivity 4	Winter barley	Durum wheat	clay 162	dry	17.6	0	100	1.59	65	13,5
	4. Scenarios definition	3. A bio-economic model to assess farmer's production strategies	of the	ctivity 5	Durum wheat		clay 162	dry	17	0	220	1.69	60	26
	S0 « Reference scenario »			ctivity 6	Soft wheat	Grain Maize	clay 162	dry	16	0	250	1.67	70	20
enar		Bio-economic model:	database	ctivity 7	Soft wheat	Sorghum	clay 162	dry	14.67	0	200	1.67	65	20
Results/scenarios	Current nitrogen use constraint = 180 kg N/farm;	 Based on linear programming; Optimizes the farmer's utilities which 		ctivity 8	Soft wheat	Meadows	clay 162	dry	6.71	0	250	1.67	70	17
	S1 « Reduction scenario »	includes the revenue and the risk	A	ctivity 9	Soft wheat	Soya	clay 162	dry	6	0	200	1.67	65	17
	Limiting nitrogen use at 90 kg N/farm;	aversion coefficient;		Activity 10	Grain Maize	Meadows	clay 162	irrigated	1.5	180	200	1.52	100	40
		Results and discus	ssio	n										

The reduction of N use at farm scale induces a cultivation of more profitable cereals crops (durum wheat, soft wheat and grain maize) instead of less profitable crops such as sunflower and winter barley (figure 2).

As a consequence, the total farm income, as well as the average farm TFI, are respectively reduced by 1.4 % and 10 % (figure 3) when the N use scenario is compared to the reference scenario.

The use of the « activity concept » does n only allow the exploration of complex scenario but also the building of a large and share database with local stakeholders (table 2). Th concept is a key issue when strategic decisior production orientation concerning a addressed in a changing socio-econom context.

Figure 2. The effect of reducing Nitrogen use on the production plan of

crops

Figure 3. Impacts of reducing Nitrogen use at the farm scale: Gross Margin and TFI (Treatment frequency index)

Table 2. Database based on production activity concept

not	Crop	Previous crop	Irrigation	Soil_useful reserve (mm/m)	Soil tillage	Herbicide resistance	Yield (qx/ha)	TFI (Treatment frequency index)	Total cost_TFI (€/ha)	Ferti_N (kg/ha)	Ferti_P (kg/ha)	Ferti_K (kg/ha)	Irrigation dose (mm/ha)	Lab Period 1	or (per d Period 2	ay) Period 3
ios,	Durum wheat	Soya	Dry	162.45	Simplified tillage	NR	52	4.3	358	148	100	0	0	0.26	0.12	0.09
red	Soft wheat	Grain maize	Dry	162.45	Simplified tillage	NR	57	4	234	191	80	0	0	0.26	0.1	0.09
his	Soft wheat	Meadows	Dry	162.45	Simplified tillage	NR	58	3.6	234	139	110	90	0	0.26	0.1	0.09
	Soft wheat	Soya	Dry	162.45	Simplified tillage	NR	58	3.6	234	122	0	110	0	0.26	0.1	0.09
ons	Soft wheat	Sorghum	Dry	162.45	Simplified tillage	NR	57	3.6	234	191	70	70	0	0.26	0.1	0.09
	Winter barley	Durum wheat	Dry	162.45	Simplified tillage	NR	59	4	234	96	30	0	0	0.26	0.1	0.09
are	Soya	Meadows	Irrigated	162.45	Simplified tillage	NR	35	2	108	0	100	160	100	0.35	0.17	0.09
mic	Soya	Soft wheat	Irrigated	162.45	Simplified tillage	NR	35	2	108	0	90	180	100	0.35	0.17	0.09
	Sunflower	Winter barley	Dry	162.45	Simplified tillage	NR	21	2	108	45	80	70	0	0.35	0.17	0.09
	Grain maize	Meadows	Irrigated	162.45	Simplified tillage	NR	100	1.8	111	122	0	0	180	0.35	0.23	1.2
	Sorghum	Soft wheat	Dry	162.45	Simplified tillage	NR	70	1.8	108	148	40	0	0	0.35	0.21	0.68

References:

Belhouchette H., Louhichi K., Therond O., Mouratiadou I., Wery J., Van-Ittersum M., Guillermo F. (2011). Assessing the impact of the Nitrate Directive on farming systems using a bio-economic modeling chain. Agricultural Systems, Vol 104, pp. 135-144. Donatelli M. et Confalonieri R. (2011). Biophysical models for cropping system simulation. Bio-economic models applied to agricultural systems. Dordrecht (Pays-Bas): Springer. p. 59-88.

Flichman G., Louhichi K., Boisson J.M. (2011). Modelling the relationship between agriculture and the environment using bio-economic models: some conceptual issues. *Bio-economic models applied to agricultural systems*. Dordrecht (Pays-Bas): Springer. p. 3-14.