

1

Designing sustainable production systems at the interface between agricultural systems and food systems

CIHEAM Forum - Montpellier - July 18, 2016

Outline

- 1. Agricultural Systems are worth to consider to work on Food Systems.
- 2. Innovation in Food Systems can be a major driver of innovation in Agricultural Systems
- 3. Diversity as a driver of sustainability of Agri-Food Systems.
- 4. Conclusion: a plee for integrated analysis, assessment and design

1. Agricultural Systems are worth to consider to work on food systems

Food production is only one challenge for AS

The Water Framework Directive **Ecological and Chemical** Status Monitoring

Philippe Operanolity | Libich Burthers |K, One Thompson | Initian Seminart

Amly Al Earaby

Agricultural Systems (AS)

□ Complex systems based on plant and/or animal production.

Increasingly Multifonctionals (provision of ecosystems services in a trade-off with production)

□ Intrinsically controlled systems (a pilot at farm level) → combine three sub-systems (Le gal et al., 2010)

- > **Biophysical** (process-based operating system)
- > Technical (technique-based managed system
- Decisional (human-based decision system)

Sustainability and innovation can only emerge from the combination of these three domains

(Wery et al., 2015. FSD5 ; http://fsd5.european-agronomy.org/video/FSD/index.html)

Agricultural Systems can be analysed at various levels

(Wery et al., 2015. FSD5)

The concept of Activity in a farm

- □ A technical sub-system or component using
 - > farm resources (land, labour, money),
 - > inputs (fertilizers, pesticides, energy....)
 - > Natural resources (land, water, biodiversity...)
- To provision a service to the system
 - > money from direct selling (eg. Wheat grain)
 - resource to an other activity (eg. Forage from cropping system provided to the animal sub-system)
 - > Money from non productive services
 - On farm tourism
 - Environmental Services (C sequestration)
 - Off farm work
- To provision a service (or dis-service) to another system
 - Watertable
 - Landscape
 - Biodiversity

Input and Output of an Activity

A dual-purpose activity (→supply chain and watershed)

BIOLOGIQUE

Vignoble de la Voie d'Héraclès

A multifunctionnal Farm Systems based on four activities

Triple M Ranch : http://www.albafarmers.org/farms.html Service Activity Safe foods Groundwater Wildlife Conservation Social cohesion **URF**

10

Food production may not be the major driver of the system

Valensole Plateau - South East France (mediterranean)

2. Innovation in Food System can be a major driver of innovation in Agricultural Systems

Ex. 1: The food legumes paradox

« marvelous » crops

Good for our health

- □ Marginal in our meals and in our cropping systems
- Traditionnal countries (e.g. North Africa) import food legumes with a tendency to cereal monoculture

 \rightarrow A lock-in

in the Agri-Food System

Pasta with legumes could create a breakthrough in cropping systems

Three actions of chickpea to reduce N fertilizers

Ex. 2: When food systems « lock in » the agroecological transition

Pesticides can be reduced but not suppressed

(Virginie Barrière, 2015. Thèse¹ ENRA PSH Avignon)

CPS	Gross yield (t.ha ⁻¹)	Marketable lettuces (%)	Marketable yield (t.ha ⁻¹)	Residue Number
Conventional	51.5 (±15.2)	71.4 (±28.5)	36.3 (±6.7)	3.50 (±1.1)
Intermediate	47.9 (±13.7)	82.9 (±24.2)	39.9 (±6.3)	4.83 (±0.8)
Low-input	45.8 (±11.0)	78.3 (±10.1)	36.0 (±10.7)	2.50 (±1.4)
P-value	0.9599	0.3212	0.7378	< 0.05

The second is in your pocket

Same profit \rightarrow + 13% for Intermediate and + 10% for low input.

Are you willing to pay for it?

(Barriere et al., 2015)

The innovation ?

3. Diversity as a driver of sustainability of Agri-Food Systems

- Plant diversity (including trees) in the field (in time and space), in the farm and in the landscape
- Activity diversity in farm and in a region (including plant and animal combinations)
- Farm diversity in a region

The three pillars of sustainable agriculture

« Crop » the plant diversity

Soil and Organic Matter at the core of the Agrosystem 20 « Engineer » the tradeoffs between Productivity and Input efficiency

« Crop » plant diversity (the example of vineyard)

Limite/suppres pesticides

Intercropping « service plants »

Compatibility ?

Combination with crops and trees

Rotation with food crops

Field Level

Economic and work efficiency has (an will) drive(n) simplification

A company producing and selling a 1000 ha of melon

60 family farms producing 50 ha of Durum Wheat for a cooperative

Monocropping

Economic Efficiency

Farm diversification driven by local (Ferme en coton, Gers, France)

Social activity

Crops for feed

Can we feed our cities with permaculture ?

Fondation de France

Paris 21/11/16

Microfermes, macro effets: du projet de vie au vivre ensemble sur les territoires Sur une année, de septembre 2013 à août 2014, et sur 1000m² cultivés, la valeur récoltée est de 50800 €, pour une charge de travail sur les parcelles de 2000 heures.

- Risk of bias in the calculation ?
- Limits in the extrapolation to the whole country ?

New circularities and solidarities ?

Design new systems combining international markets, specialized farms and plant diversity in the field ?

Ingénierie pour des AgroSystèmes Durables

8T/ha of rice without any fertilizer and pesticides !

When sustainability upscale the problem

Conv.

Impacts at farm level ? At regional level ? Solutions to unlock the system ?

 \rightarrow A need for Integrated Assessment of Agricultural Systems (Delmotte et al., 2016; Agricultural Systems)

Which priority in input reduction ?

4. Conclusion: a plee for integrated analysis, assessment and design of Agricultural Systems (IAAS)

« Farm-centered » Multi-scale and multidomain system's analysis

(adapted from van Ittersum et al., 2008. Agricultural Systems)

Agricultural systems by design http://fsd5.european-agronomy.org/

Food Systems can drive innovation if Agricultural Systems are properly considered

Combining field/farm data and modelling

To Design Agricultural Systems, Food Systems and Policies in a « contextualized » Nexus

With Mediterranean students and institutions

